
1 A comparison of Rybka and IPPOLIT

The purpose of this document is to list some similarities and differences between
Rybka and IPPOLIT. The information regarding the former was obtained via
a painstaking analysis via debugging tools. I do not claim to understand ev-
ery facet of Rybka, but do consider myself sufficiently expert to produce this
document.

1.1 Timeliness of this document

Although the early history of IPPOLIT is unclear, it seems that May 2009 is
the first time that a direct claim regarding its parentage was made by Vasik
Rajlich. As the classical length of insordescence is one year, I find no reason
not to discuss his claims freely.

1.2 Scope of this document

I will attempt to stick with verifiable evidence from the relevant programmes,
and demur any discussions of the multitude of sideshows that have arisen. I
have tried to emphasize code similarities rather than idea similarities, as the
latter are harder to pinpoint.

1.3 Versions

Rybka means Rybka 3 Chess, and IPPOLIT means code akin to the original
IPPOLIT.c and/or IPP ENG.c (though I didn’t try to understand the Russian).
My understanding is that I am using the “contempt-free” values from Rybka. I
have not looked at the “Human” and “Dynamic” versions of Rybka 3 in depth,
but have done a few experiments that indicate that their discussion is not overly
relevant here.

2 Overview

The programmes will be compared and constrasted on the major parts that go
into a chess engine. The relevant major headings include Board Representation,
Search, and Evaluation, each of which has various subcomponents. I consider
that it should be up to the reader to determine the relative significance. Two
appendices are included to aid in comparing the particularities of evaluation
and search.

3 Board representation and internal structures

Rybka and IPPOLIT both utilize Hyatt’s rotated bitboards. I see no evidence
(such as ordering of variables) that IPPOLIT has used decompiled code of Rybka
to achieve this.

1

3.1 Bitboard arrays

Both have a large number of bitboard arrays that are used for convenience. For
example: squares which a bishop could attack from a square; squares that should
be free from pawns for an open file; masks for isolated files, etc. The overlap is
large, but I don’t know whether it is notable. I do not see any “suspicious” array
that Rybka contains which then appears in IPPOLIT. In fact, the more curious
arrays of Rybka do not recur in IPPOLIT, even in surrogate form. IPPOLIT
largely generates in its own arrays on startup, but this is probably unimportant.

3.2 Move encoding

Both Rybka and IPPOLIT use 32 bits integers for move encoding. The lowest
12 bits in both are from|to. The 12th and 13th bit in Rybka are for promotion,
and the 14th for en passant, with the 15th being for if a quiet move is check.
There is no encoding for castling, as that is detected with (say) e1g1 by noting
that a king moved 2 squares. IPPOLIT uses bits 12-14 for promotions (4-7), en

passant (3), and castling (1). The 15th bit is used (following Rybka) for whether
a quiet move is check, but also to help with history values when already in check.

The upper 16 bits have a capture score (MVV/LVA essentially) or a history
score, or a “positional gain” score. Rybka uses a linear fit for capture scores,
while IPPOLIT has a handmade table and considers promotions (both Q and N)
in a different manner. These capture scores only take up part of the 16 bits,
and the other bits are marked as to whether a capture is always SEE. IPPOLIT
uses bit 21 (via 2<<20) when a capture is good (like PxN), and bit 20 when a
capture is equal (like PxP). With Rybka I think it is bits 16-19 that are used.

The history score for non-capture moves is piece|to for both. Rybka uses
two arrays, depending on whether the scout value is close to the evaluation, while
IPPOLIT only has one, and it simply ignores a fail-low history subtraction if
the scout and evaluation differ by too much.

3.3 Piece encoding

Rybka has OoPpNnBbRrQqKk as its piece order, where Oo is occupied squares, and
capital letters are White. IPPOLIT has OPNKBBRQopnkbbrq, where the first B

is the light-squared bishop, and the second is the dark-squared. This difference
in encoding must be kept in mind at all times during a comparison, as it forces
many things to be different by necessity. So to make a proper comparison, some
“translation” from one piece-set to the other must be made.

3.4 Material tokens

Both Rybka and IPPOLIT dynamically update material indexes during the
make move routine. These are then used in evaluation to get the material value
(though IPPOLIT has the actual value, while Rybka scores the adjustment from
the 1-3-5-10 standard). Rybka does split the bishops in this indexing, but not

2

at the bitboard level as with IPPOLIT. Rybka has 64 bits for this token, while
IPPOLIT has 32 bits, though I’m not sure how often Rybka uses some of the
fields. IPPOLIT reserves the highest bit to handle promotions (such as multiple
queens), but Rybka does not seem to have any method to handle overflow.

3.5 Material imbalances

Rybka generates a table of material imbalances using a three-stage interpolation.
IPPOLIT uses a 4-stage interpolation, and the 1-3-6 weights (for minor-rook-
queen) with IPPOLIT are not the same as in Rybka. Rybka also has some extra
weightings that IPPOLIT does not, regarding mixed minors. Both have some
affinities for knights and rooks corresponding to the count of pawns.

Both have a token for “winning chances” that (for instance) is reduced in
an endgame of opposite coloured bishops, etc. The values for IPPOLIT are a
bit different, as (for instance) they vary with how many pawns are left, unlike
in Rybka. IPPOLIT also embeds into this token whether a nullmove should
be tried. Finally, both have a “weight” for the endgames with zero or one
pawns (like RB vs R), and here Rybka’s code/values seem more structured than
IPPOLIT’s, as the latter is more akin to a bunch of special cases. Rybka seems
to have these weights on a scale of 0-16, while it is 0-10 with IPPOLIT.

3.6 Static Values (PST)

IPPOLIT generates these by a formula on startup. With aid from Larry Kauf-
man, it seems that Rybka’s originally came from similar formulæ (and indeed
Fruit did something similar already). The specific values are somewhat similar,
though one needs to consider the material weighting for a complete comparison.
More about the exact static values appears in an appendix,

Both Rybka and IPPOLIT use one 32-bit integer to keep opening/endgame
values, but Rybka has an additional 0x80008000 in it presumably to aid with
over/underflow at the 16-bit boundary. I will say more about this in Evaluation.
Also, Rybka uses millipawns, while IPPOLIT has centipawns. Again this needs
to be kept in mind when trying to make a comparison.

4 Board updating and scanning functions

Both Rybka and IPPOLIT have a variety in this genre, such as move generation
functions, make/unmake, and SEE. The most notable similarity is that both
split every such function into two distinct black/white function pairs. Rybka
has a few more move generators, and an extra SEE.

4.1 Make and Undo

It’s hard to know what would be considered “similar” here. Due to the various
differences in board representation, there are various differences in the code.

3

I’m not sure what to say beyond that, as the make/undo functions are fairly
formulaic in any event. I’ll expound, and illustrate many of the difficulties in
comparsion, by listing the make white castle code (the rook part) for Rybka:

0x482a00: xor %eax,%eax

0x482a02: cmp $0x6,%ecx # if to is G1

0x482a05: mov %eax,2392757(%rip) # 50move = 0

0x482a0b: jne 0x482a84 ###### then do Q-side ooo

0x482a0d: xorq $0xa0,2392584(%rip) # WhOcc ^= F1 | H1

0x482a18: xorq $0xa0,2392637(%rip) # WhRook ^= F1 | H1

0x482a23: xorq $0xa0,2392698(%rip) # Occupied ^= F1 | H1

0x482a2e: xorq $0x9,2392682(%rip) # Right45 ^= F1 | H1

0x482a36: addl $0x5a0000,2392712(%rip) # Static += 90op+0eg

0x482a40: mov %eax,2392310(%rip) # Board[H1] = Empty

0x482a46: mov $0x80008000,%rax

0x482a50: movl $0x8,2392282(%rip) # Board[F1] = WhRook

0x482a5a: xor %rax,2392655(%rip) # Left90 ^= F1 | H1

0x482a61: mov $0x800100000,%rax

0x482a6b: xor %rax,2392614(%rip) # Left45 ^= F1 | H1

0x482a72: mov $0xd8b3287ea544969,%rax

0x482a7c: xor %rax,2392653(%rip) # Hash ^= WRf1 | WRh1

0x482a83: retq ###### below is Q-side

0x482a84: xorq $0x9,2392468(%rip) # WhOcc ^= A1 | D1

0x482a8c: xorq $0x9,2392524(%rip) # WhRook ^ = A1 | D1

0x482a94: xorq $0x9,2392588(%rip) # Occupied ^ = A1 | D1

0x482a9c: xorq $0x201,2392561(%rip) # Left45 ^ = A1 | D1

0x482aa7: xorq $0x10000400,2392558(%rip) # Right45 ^= A1 | D1

0x482ab2: addl $0x820000,2392588(%rip) # Static += 130op+0eg

0x482abc: mov %eax,2392158(%rip) # Board[A1] = Empty

0x482ac2: mov $0x80000080,%eax

0x482ac7: movl $0x8,2392155(%rip) # Board[D1] = WhRook

0x482ad1: xor %rax,2392536(%rip) # Left90 ^= A1 | D1

0x482ad8: mov $0xaaaff37267ceded3,%rax

0x482ae2: xor %rax,2392551(%rip) # Hash ^= WRa1 | WRd1

0x482ae9: retq

One can compare the IPPOLIT code, and there are similarities in ordering
(WhOcc, WhRook, Occupied, Left90,Left45, Right45, Static, Hash, Board[H1],
Board[F1]), but not a complete copy; also, the C code appeared in move do castle

of utils.c in Strelka in any case. IPPOLIT doesn’t set the 50-move count to
zero when castling, while Rybka does.

Both Rybka and IPPOLIT only check for stopping/input in make white move,
and (I think) they both do so every 0x1000 (or 4096) moves, though the check-
ing mechanism is different. Rybka is actually counting the number of times
white make move is called via subtracting down from 0x1000 and then incre-
menting a second count when it hits zero, while IPPOLIT is just counting

4

white make moves as a 64-bit integer, and checking whether its low 12 bits are
zero (so that 4096 divides it). Rybka divides this count of white make-moves by
7 to get a “node” count, while IPPOLIT additionally counts black make-moves
and null make-moves, and returns the total as the node count.

4.2 Move generation

Both have the standard generators for captures (and promotions), quiet moves,
quiet checks, and check evasions. Rybka sees to have one than one generator
for some of these. Both also have a move generator for moves that might be
expected to gain a lot positionally. Rybka has a couple of these (IPPOLIT has
one), and uses various masks for exclusion in them, while IPPOLIT does not.

4.2.1 Captures/Promotions

For captures/promotions, Rybka also computes pins/xrays (IPPOLIT does this
in evaluation), and Rybka includes underpromotions (at least if a flag passed as a
function argument is set), while IPPOLIT only includes knight underpromotions
that give check (Rybka does also, even when the flag is not set). IPPOLIT does
en passant first, while Rybka does it after other pawn captures. Both use the
order: left pawn captures, right pawn captures, knights, bishops, rooks, queens,
kings, and pawn promotions (including captures).

4.2.2 Noncapture moves

For noncapture moves, both keep track of whether the move gives check di-
rectly (xrays are handled differently), but IPPOLIT only precomputes the or-
thogonal/diagonal arrays (from the king’s square) if a piece of the same sort is
available. Both generate castling (kingside then queenside) first, but then Rybka
follows the order PNQBRK, while IPPOLIT has QRBKNP. Of necessity, IPPOLIT
has underpromotions (including captures) here. IPPOLIT has to do some chas-
ing with its light/dark bishops to get the correct history values. To state the
obvious, IPPOLIT considers bishop underpromotions, while Rybka does not.

4.2.3 Check evasions

For check evasions (at least the “main” one for Rybka), the structures are again
similar but different. IPPOLIT has a “pieces giving check” array from evalua-
tion, while Rybka has to compute this. IPPOLIT uses the 15th bit of the move
to indicate that a checking move is not a capture, and in that case, a history
value is appended to it later. I got confused as to what Rybka is doing, but the
method seems to be to just set history values, and then later make a change for
captures (and hash/killer moves; IPPOLIT also recognises these in the search).
The method of generation seems to differ somewhat here, as IPPOLIT would
catch “pawn captures that interpose (but not capturing the checking piece)“, if
such things existed. Other than this difference in handling pawns, both first do
king moves (in conjunction with double check), then pawns, then knights, but

5

then IPPOLIT does BRQ, while Rybka does diagonal moves and then orthogonal
moves.

4.2.4 Quiet checks

For quiet checks (I’m not sure which is the “main” one for Rybka), IPPOLIT
first uses its list of xray pieces (from eval), to generate discovered checks (PNBRK),
then does (non-promoting) pawn captures (if the captured piece was not in the
target of the capture generation), then QRBN moves with SEE checked, and
finally some pawn pushes (more below).

For Rybka, method one uses a list of pieces that can check (computed in
move generation). However, first knight checks are done, but sometimes only
those that fork something, or the opposing king has no flee square, and/or a
few other conditions with SEE. Then the possible-checkers are considered (BSF
order), and the list of xrays computed at the same time. These are then looped
over in BSF order (internally the code splits as PBNRK). Finally some pawn pushes
are done. I don’t see where pawn captures are done here, but maybe I missed it.
The second method for Rybka does knight checks with simpler conditions than
before, then does diagonal pieces, and then orthogonal ones. With the latter
two, xrays are generated at the same time. All pawn pushes (and previously
omitted captures) that give check are then generated, though a pawn-push needs
to pass SEE.

Coming back to the pawn pushes and captures in method one, Rybka has a
nontrivial condition involving whether the king can flee, or whether the pawn
push is a fork, etc. IPPOLIT doesn’t do this, and has a “pawn is guarded”
condition (to avoid SEE if possible) that I don’t see in Rybka. The only “curi-
ous” thing is that both Rybka and IPPOLIT check if the opposing king is on its
4th-8th rank before looking at pawn pushes, though I guess this is an “obvious”
condition when you think about it (and the mask is combined with either b-h

or a-g files, depending on whether left/right checks are being considered).

4.2.5 Positional gain generators

Finally we get to the generators that only list moves with a sufficiently high
“positional gain” either possible and/or likely – these generators are used slightly
differently in search by Rybka and IPPOLIT in any case, but I will compare
them here. Rybka has two of these, one of which only considers knight then
pawn then king moves, all subject to masks (which can vary by game phase)
on the to/from squares. The other Rybka function has a mask only for the
knights, and considers NPKBQR (in order). For IPPOLIT, the order is PNBBRQK.
The idea of these functions is to generate quiet moves, but only record those
whose “positional gain” is large. Both place this “positional gain” in the upper
16 bits of a 32-bit move, though Rybka does this in general with quiet moves
(I think), and IPPOLIT only in this special search (which leads to IPPOLIT
accessing the same information later, directly from the array).

6

4.3 SEE

Rybka seems to have two SEE functions, but one of them is quite close to the
normal version. I will remain silent about the other. It is hard to say what I
should expect to be different between Rybka and IPPOLIT here, as the method
is rather straightforward (and appears in Strelka). IPPOLIT has values like
6174, 12345, 23456, 12345678 for its “large” integers, and Rybka does not (it
has 2001 and 2999 as with Strelka). IPPOLIT has a margin of −60 appearing
in SEE, whil this is just 0 in the main Rybka SEE function. IPPOLIT uses
100,325,500,975, while Rybka uses 1,3,5,10.

Both Rybka and IPPOLIT use information about pins in SEE, but it comes
from different sources. Rybka gets it from capture generation (and passes it to
SEE as an argument), while IPPOLIT gets it from evaluation/mobility directly
from an evaluation structure, and also tries to determine if the move passed to
SEE undoes the pin.

5 Tables

5.1 Pre-evaluation

Rybka has a large amount of pre-evaluation, depending on the game phase (like
Fruit, with 1+2+4 weighting for minor+rook+queen). About 20-25 parameters
are controlled, including pruning margins, lazy margins, etc. IPPOLIT has no
pre-evaluation that I can see.

5.2 History

Both Rybka and IPPOLIT have 16-bit history values based on piece-to, though
Rybka only uses 15 bits. The update mechanism is similar, in that it uses a “sig-
moidal” function to preclude overflow. IPPOLIT updates H to H-(H*depth)/256
for bad moves, and H to H-(0xff00-H*depth)/256 for good moves. Rybka has
different values for 0xff00 and 256 here. Rybka also keeps a list of 4 killer
moves (2 with IPPOLIT), though I’m not sure the latter two are ever used.

Rybka actually has two history tables, the second of which is used in certain
circumstances when the scout value and the evaluation differ by a lot. IPPOLIT
doesn’t update history for “bad” moves when these differ by too much. The
starting point for history scores in IPPOLIT is 0x800, which is the not the same
as Rybka (nor is it merely twice as much).

5.3 Positional Gain

Both Rybka and IPPOLIT have a “positional gain” table indexed by piece and
to-from that tries to guess what the positional gain (or the maximal positional
gain) from a move should be. This is updated after evaluation. Upon computing
the position evaluation (and the move is not a capture), there are two possi-
bilties: if the positional part of the evaluation is larger than the stored value,

7

the stored value is set to the positional part of the evaluation; otherwise the
stored value is decremented by 1. Rybka’s method is a bit different (different
cutoffs, and scaling), though in the same vein. Rybka also only has an array of
7x64x64 entries here, re-using the same array for multiple pieces (for instance,
the to/from for knights and rooks already distinguishes them), while IPPOLIT
just has the 16x64x64 you might expect.

Rybka actually has a number of these positional gain tables, updated in
various ways, though the other only appear to have some (minor) application
in lazy conditions, if they aren’t just totally ignored. IPPOLIT has only one
positional gain table, and it does not appear in the lazy conditions. Rybka’s
stored values for positional gains are only 8 bits wide, while IPPOLIT’s are 16.
Rybka starts the positional gains at some values from a huge table (I have no
idea from where it comes), while IPPOLIT has them all be 0 to begin.

5.3.1 A Smoking Gun?

IPPOLIT peculiarly has a leftover condition in the updating of positional gain,
in that it first checks whether a move is a capture, and if not, it then checks
whether it is a capture (again!) and the captured piece is a pawn; the latter is
exactly a condition (among many) in Rybka’s code, though it does appear in
the same place (at the start). Also, Rybka does (many) other things here when
a move is a capture, whereas IPPOLIT does nothing in this case.

This “could” be harmless: for instance, the IPPOLIT testers might have
been just trying many different combos here, and didn’t make the last deletion
of redundant code. Perhaps humourously, this “copied” code (if it is that) never
actually does anything in the end...

5.4 Hash

Rybka’s main hash entries are 64 bits. IPPOLIT’s are 128. Rybka uses 7 bits
for depth, 3 bits for age, 12 bits for a move, 10 bits for a score, 4 bits for
flags, and 28 bits of Zobrist value. IPPOLIT follows something more akin to
Fruit, with 8-bit boundaries. The eviction criterion with ageing is different:
Rybka counts age to 8 (by multiples of 128 I think), while IPPOLIT counts
to 256 (by ones). The formula for combining depth with age is also not the
same. IPPOLIT has the pedantic idea of changing the age of a zeroed entry
(when an exact entry displaces bounds). The specific Zobrist values for piece-
square combos are generated by IPPOLIT on start-up (using some randomised
function), while they are simply read from a table in Rybka.

5.4.1 Main-hash functions

Rybka seems to have a couple more hashing functions, though they all serve
the same purpose in the end. IPPOLIT splits the hash-writing functions by
lower, upper, lower-ALL, upper-CUT, exact. Rybka on the other hand does
not split CUT/ALL into separate functions, and so passes an argument to the

8

lower/upper hashing function to tell it whether/if the node is CUT/ALL. Both
keep 4 entries in each compartment, with similar overwrite rules.

5.4.2 Pawn hash

The pawn-hash entries in Rybka are 136 bytes, while IPPOLIT uses 64. I’m not
sure Rybka uses all 136 bytes, but the saved information differs in any event
(Rybka keeps rotated bitboards of pawns, for instance). Both have an evaluation
hash, which has 32-bit entries in Rybka, and 64-bit entries in IPPOLIT. (In
passing, I can note Rybka seems to contravene the UCI philosophy by failing
to reset this evaluation hash when ucinewgame is invoked). There is a “pv
hash” for IPPOLIT (to try to avoid moves being overwritten when the PV is
reconstructed), which does not appear in Rybka.

Both use pawn-hash in conjunction with king position, so that it is really
a king+pawn hash. However IPPOLIT takes a bit more advantage of this (for
instance, a bonus for castling is done in pawn eval, rather than in eval).

6 Evaluation

Both IPPOLIT and Rybka have evaluation functions ©. Rybka has two (split as
white/black), though except at the very end, I think they do exactly the same
thing. However, it is still notable that while IPPOLIT follows the white/black
split of Rybka at all other points, it does not do so here. A more detailed
analysis of the size of positional components is given in the appendix.

6.1 Evaluation, first steps

The first step for each is to use the material token to get the material evalua-
tion. As noted above, IPPOLIT has a overflow check for promoted pieces, and
computes the material directly in this case. In other cases, it gets the exact
value from the table. Rybka gets the material adjustment from the table, and
seems simply to hope that this will not be problematic when there is an overflow
condition (like 2 queens for one side).

6.2 Evaluation: pawn endgames

The next step is to see if the position is in evalhash, and then both run special
code in the case of a pawn endgame. Both use a similar valuation involving the
frontmost free pawn, but with different values, and (notably) IPPOLIT checks
if the opponent has a non-passed pawn that might be even further advanced.
IPPOLIT then has a KP vs K bitbase (two 120K files in the source), and a check
for draws with pawns only on the a-file or h-file (lacking in Rybka). Some of
the details of array access (or indexing) are a bit different also (for whether the
king is in the square of a pawn, depending on who is to move).

9

6.3 Evaluation: lazy conditions

The condition for lazy evaluation is a bit different (even given the bounds as
passed variables), as Rybka varies the bounds based upon whether a move is
a capture and whether the previous move was lazy, while IPPOLIT only looks
at how many previous moves were lazy (Rybka does not keep a running total).
Rybka varies some “positional gain” parameters when lazy is triggered, but
IPPOLIT does not. I’m not exactly sure what these do in Rybka in any case.
Later versions of IPPOLIT/RobboLito seem to have eliminated lazy eval in
various endgames, but I think the original used it in this case. Of course, both
call an evaluate mobility function when the lazy condition holds.

6.4 Mobility evaluation (special function)

Both compute mobility of all pieces, and determine attacked squares, and if
in-check. The order in Rybka is PNBRQKpnbrqk, while the order in IPPOLIT is
KkNBRQnbrqPp. IPPOLIT also has to keep track of xrays.

6.5 Evaluation of pawns

Pawns are evaluated in a separate functions, which I describe below.

6.6 Evaluation of pieces

Throughout the evaluation of pieces, Rybka and IPPOLIT both keep running
totals for squares that are attacked, but IPPOLIT also keeps track of pieces
that give check, and pin/xrays. Both keep track of “safe” squares for mobility,
though its use is not always the same. The “main” evaluation tools of each are:
mobility, pieces that are attacked (taking loose pieces and good-SEE attacks
into account), and guarding one’s own king. Both use these a lot.

6.6.1 Evaluation of pieces: pawn mobility and queens

Both Rybka and IPPOLIT look at pawn mobility first (with respect to non-
pawns), though Rybka counts it differently on the side of the board of the
opposing king. The next consideration is queens, with mobility (and xrays)
being computed, and a score added for safe mobility (with Rybka adding a bit for
“forward mobility”). This is done in conjunction with whether the queen gives
check, or attacks a square next to the opposing king, or guards her own king.
Loose pieces (not guarded by a enemy pawn) are added, then a subtraction if an
enemy pawn attacks the queen. Finally a 7th rank bonus is added. Other than
mobility difference (and the differences forced by xray computation) this is about
the only place that Rybka and IPPOLIT really diverge for queen evaluation
(though of course the numeric values differ throughout). Both demand that the
opposing king or an enemy pawn be on the 7th/8th rank for a 7th-rank bonus,
but IPPOLIT gives a “doubled on the 7th” bonus only if the opposing king is
on the 8th, and the queen actually guards the rook that it also on the 7th.

10

6.6.2 Evaluation of pieces: Rooks

Rybka next does bishops, while IPPOLIT turns to rooks. I will look at rooks.
After the usual mobility, xray, king attack/guards, IPPOLIT looks for attacks
of loose enemy pawns and minor pieces, then if the rook attacks an enemy
queen, and then if the rook is attacked by an enemy pawn (this is all part of a
building-up routine, in which all good-SEE attacks will be noted). Rybka does
some funky stuff with mobility and pawn skeletons, but also essentially does all
the above, with a few extra additions (for instance, do two rooks guard each
other when the opponent has a queen?). The usual additions for open files are
then done – each has a score for an open file that is blocked by a fixed opposing
minor piece, though the computation of this condition is different (mask versus
bit-scan). IPPOLIT has a bonus for a rook outpost, which has a different notion
in Rybka (see below). Both then check if the rook is on the 8th, and IPPOLIT
then just checks if the opposing king is also, while Rybka considers doubled
major pieces on the 8th. Then the rook is checked for being on the 7th rank,
with the doubling criteria differing as mentioned in the queens section. Finally,
both check if the rook is on the 6th rank, again with side conditions about the
opposing king and pawns.

6.6.3 Evaluation of pieces: Bishops

Rybka computes a pawn skeleton in pawn evaluation, and uses this with rooks
and bishops. For use a “colour count” with pawns as one facet in detecting bad
bishops, but the array is not the same, and it gets used quite differently. (Rybka
uses it at the end of the evaluation routine, while IPPOLIT uses it directly here
in the bishop evaluation. I think Rybka also uses it with drawishness).

Both consider mobility (safe square, and possibly forward-mobility being
advantaged) and attacks and guards as with other pieces. Rybka again has a
few extra evaluation items (such as pawn directly in front of a bishop), while
IPPOLIT again counts outposts. The notion of a “outpost” in Rybka seems be
simply that a pawn guards a minor piece (with no condition on the opponent’s
pawns), while IPPOLIT takes much more into account. The mechanism for
trapped bishops is expanded with IPPOLIT to include a guarding (by a pawn)
of the trapping square. The main notable feature of IPPOLIT here is the
calculation of good/bad bishops based on the pawn skeleton, which is quite
different from Rybka (which also does it later).

6.6.4 Evaluation of pieces: Knights

Rybka uses a quite specific notion of mobility with knights, while IPPOLIT
just does safe forward mobility. IPPOLIT also does outposts. Both do the
usual with attacked pieces. Rybka has a couple of extra evaluation items (like:
knight is 2h+2v away from opposing king in an endgame). Rybka has a slight
knight outpost score, while IPPOLIT has a barrage of bonuses beyond a simple
outpost here (if the knight is guarded by a pawn, if it attacks an enemy, if it is
centralised).

11

6.7 Evaluation: continued

Both now give an addition if a king attacks an unguarded pawn, though IPPOLIT
does some of this in pawn evaluation. IPPOLIT then counts trapped rooks via
a much different formula (and method), while Rybka does this after good/bad
bishops. Both then handle king safety, but with a different condition and mixing
(the end results can differ quite notably – see the appendix). Both then gives
a bonus if a side has more than one good-SEE attack. IPPOLIT adds a bonus
for a rook/queen that corrals a king on an edge file in the endgame, which is
absent in Rybka.

6.8 Evaluation: passed pawns

Both turn to passed pawns, where the conditions are not exactly the same,
though both have special considerations for rook endgames (and queen endgames),
and the main points are: whether the pawn can move, whether it has a clear
path, and attacks (of either side) to the squares in front of the pawn, with Rybka
adding a couple of other points, though there are also some look-ups to tables
that are all zero here.

6.9 Evaluation: sundries

Rybka next does the computation of good/bad bishops, using the pawn skeleton.
This is noticeably different from IPPOLIT, though I’m sure not exactly what
it does in all facets. Rybka then does trapped rooks (done above in IPPOLIT),
and a bonus for castling, which IPPOLIT has in pawneval. Rybka has a penalty
for a king having no fleeing square (absent in IPPOLIT).

6.10 Evaluation: finale

Each obtains the final score via a linear interpolation of opening/ending scores
(as in Fruit), though their computations of “phase” are different. This is
then squashed by a “drawishness” parameter (from pawneval) that again dif-
fers [Rybka has an asymmetry with black/white eval at this juncture: although
min(x, 150) = −max(−x,−150), the right shift by 8 (after re-scaling from draw-
ishness) in conjunction with this is not the same for positive/negative values].
As noted above, both pack two 16-bit scores into a 32-bit quantity through-
out the evaluation routine, and need to unpack it to do the interpolation. The
details are different, since Rybka has an additional 0x80008000 added into this.

IPPOLIT then checks for special endgames (including the bishop/knight
mate code that is a large macro expansion, and blind bishops) and does a
scaling with the 50-move rule. Finally the bookkeeping of positional scores and
evaluation hash concludes the function.

12

7 Pawn evaluation

Both consider islands, holes, doubled, isolated, and backward pawns. They
compute whether a pawn if backwards by a nearly identical method. Rybka
also counts a few other things (central pawns, for instance), and has more to
track with rotated bitboards of skeletons. Both keep a square-colour accounting
of pawns, and whether such pawns are blockaded, but the system is different
in the details. Both compute a distance from a king to pawns, though Rybka’s
method uses a complicated array that is absent in IPPOLIT. Curiously, both use
10000 as an upper bound for this distance (Rybka actually uses this later, while
IPPOLIT does not — when there are no pawns, Rybka computes the distance
to centre of the board, while IPPOLIT ignores it). Rybka has a much more
involved method to determine candidate and passed pawns and their scaling (I
don’t claim to understand every detail). Both give a bonus for an outside passed
pawn, though the indexing-access to this differs (squares versus files).

7.1 Drawishness with pawns

The second part of pawn evaluation is “drawishness” and the table used by
Rybka is not very much like the method of IPPOLIT (which counts the number
of pawns and whether they are opposed). This is detailed more in an appendix.
Rybka also looks at central pawns, and their blocked nature, while IPPOLIT
does not. (Larry Kaufman tells me that this is largely oriented toward anti-
human play).

7.2 Pawns: Shelter

IPPOLIT adds in a few extras here that Rybka did in regular eval, such as a
bonus for the right to castle. Pawn shelter is then computed. Rybka largely
uses the 3x4 blocks that appear in Strelka, though the central files differ, and
pawn storms with blocked centres and kings on opposing wings (and the like)
are taken into account. The method in IPPOLIT is different in its execution, as
it computes (bit-scans) the first pawn of three files near the king (not always the
same files as in Rybka), and then adds the values for these. IPPOLIT penalises
a storming pawn that is blockaded, and uses an interpolation method for shelter
when castling is possible, both being absent in Rybka.

7.3 Pawns: Long diagonal

Finally, both do something with the long diagonal. This is probably a good
example to show how one can have “kind of the same idea” (the same label
“long diagonal” applies to each), but have it be much different at a number
of levels. Rybka subtracts a penalty of 40, 20, 10 millipawns (in the opening)
depending on whether the long diagonal of the king has: no pawns on it; has
only enemy pawns; or has only friendly pawns. IPPOLIT has a penalty only
depending on whether a friendly pawn is on the diagonal, and it depends on

13

the rank of the pawn, and the file of the king. For instance, for the a-file, the
penalty is 0,2,4,6,8,10 centipawns, so a white king on a1 would incur a penalty
of 2 centipawns if there is a white pawn on c3 but none on b2. The long
diagonal for a given king square is obtained from an array with each, though
(for instance) it seems that Rybka doesn’t consider a5 to be on the e1 diagonal,
as it wouldn’t do anything for shelter (I guess), and IPPOLIT (for instance)
puts g7 on the “long diagonal” for h6.

8 Search

Both use an aspirative alpha-beta search with lots of pruning and various exten-
sions. IPPOLIT has functions for: root, pv, qsearch pv, CUT, ALL, exclusion,
low depth, qsearch, and the last 6 all have a version for when in check, and are
all split for white/black. Rybka combines CUT/ALL/exclusion to one search,
but has an extra null-window search called only from pv nodes (and which can
then re-call pv-search). The notion of “low depth” for IPPOLIT is less than
4 ply, and I think this is 3 ply in Rybka. Rybka passes more parameters to
the various functions, and these seem to have to do with controlling extensions
somehow. In an appendix, I give some pseudo-code to indicate the structure of
the search functions.

8.1 Aspiration

The aspiration in Rybka goes by 20, then 40, 80, 160, 320, ... while in IPPOLIT
it is 8, 12, 18, 27, 40, 60, 90, 135, ..., so that Rybka doubles, while IPPOLIT
multilpies by 3/2 and starts with a more narrow window. The condition as to
when to use aspiration is also different; IPPOLIT starts at depth 7, while Rybka
at depth 6, and IPPOLIT uses it for all non-mate scores, while Rybka turns to a
full-window when the score exceeds 500 in size. Both have some mechanism for
making an “immediate” move when the root position has already been analysed
sufficiently. With IPPOLIT it checks that the “best move” is at least 50 ahead
of other moves (via exclusion search to a lower depth), while Rybka’s method
is similar, though not the same.

8.2 Root search

The “root” searches are (like almost everything it seems) similar in the algorith-
mic sense, but different in details. For instance, Rybka uses this null-window
PV-esque function, which IPPOLIT lacks. Both have “easy” moves, though
with a different criterion. Both have a condition for “best move is being chal-
lenged” (that is, a zero-window scout search failed to reject an alternative –
Rybka first turns to the zero-window PV-esque search before a full-blown PV-
search) that can lead to more time being allocated, and both have a “best move
now looks bad flag”, though the margin of 25 centipawns in IPPOLIT is not the
same in Rybka. The initial sorting of root moves is not exactly the same either,

14

especially with captures. Rybka quits at 6 + 60 · 2 half-ply, while IPPOLIT can
go up to 250 – the reason might be in hash tokens, as Rybka only has 7 bits for
the depth.

8.3 PV nodes

The main PV searches follow the general alpha-beta mechanism. As noted
above, Rybka has four extra parameters passed to this function (not counting
the board pointer), which seem to control extensions. Both first do a hash
lookup, though the condition (largely on depth) for when to use a hash entry
at a PV node differs. The IID (iterative internal deepening) comes next: when
there is no hash move and the depth is at least 6 (half-ply), IPPOLIT does a
search at four ply less, then two ply less if this is successful. Rybka does the
same, but the initial condition involves a larger depth, a different window is
used with the IID (as opposed to IPPOLIT which adds/subtracts “depth” [in
half-ply] from alpha and beta). Also, IPPOLIT does the same four ply, then two
ply, in an alternative case, while Rybka reduces by only 1 ply when the depth
is sufficiently small. Rybka also has a secondary “hash move” slot (for move
ordering) if the reduced-by-4-ply search and reduced-by-2-ply search disagree.

8.3.1 PV nodes: extensions

Both then generate evasions when in check, with the details of ordering with
trans/history/capture/other scores varying. Both give a “singular” extension of
2 half-ply for a forced move when in check, and a half-ply extension if exactly
2 legal moves exist (I didn’t actually verify that both only generate legal moves
in evasions, as interposing with pinned pieces can be tricky).

Both then test if the hash move is “dominant” with all other moves bad.
This is done via the “exclusion” search, though the conditions with its use are
quite different. Both first ensure that the depth is at least 16 half-ply (however,
this “16” appears later with IPPOLIT, but varies with Rybka), and the hash
move is vaild, and that we don’t already have a 2-half-ply singular extension
from a forced move (when in check). Rybka then determines if this hash move
generates additional extensions (and so the whole shebang could be skipped),
while IPPOLIT just computes its value with depth reduced by 10 half-ply, this
being 12 half-ply with Rybka. The methods now diverge a lot, with Rybka doing
something different when the depth is at least 26 half-ply, and keeping track of
previous singular moves, while IPPOLIT has a much simpler accounting. Both
call the “exclusion” search, though the scout value is different, as in IPPOLIT
it varies with the depth. IPPOLIT also calls “exculsion” twice (first with the
scout less by depth/2, then with it less by depth), adding one singular half-ply
for each time. Rybka does not have this, though as I say, keeps track of singular
moves in a different manner.

15

8.3.2 PV nodes: next-move loop

Both then turn to a next move loop. Moves that allow a repetition are (pre-
)rejected in a similar manner involving to/from square detection (when scout is
bigger than some bound, and this bound differs at the various times this idea is
used, at least in Rybka), though the exact criterion differs. Extensions are then
added, starting with passed pawn pushes (though the definition/calculation of
these differs), and also whether a move gives check. When a move fails high,
Rybka can first use the null-window PV-esque search (before full-blown PV),
which is nonexistent in IPPOLIT. After the move is un-done, Rybka has some
hashing code that I don’t see in IPPOLIT. Both then take care of history, etc.,
with the necessary details differing. As noted above, Rybka has 64-bit hash
entries, with only 10 bits for a score, and 2 history tables rather than just one.

Since IPPOLIT lacks a null-window PV-esque search, I will skip it.

8.4 qsearch for PV nodes

Both have a PV qsearch that gets called from a PV node when the depth gets
below one ply. The delta prunings follow a similar pattern (pawns, minor,
rooks, with a skipping if no pawn is attacked), though IPPOLIT has fixed
margins while Rybka’s depend on the pre-evaluation (game phase). Both then
do capture/promotiion generation, but IPPOLIT notes the hash move before
entering the next move loop, while Rybka does it during the sort phase of this
loop. Both track bad captures, but IPPOLIT actually looks at them later, while
Rybka just seems to do something with them in quiet checks. Rybka uses a
lazy margin (when calling evaluation) throughout this search, while IPPOLIT
does not.

8.4.1 qsearch for PV nodes: bad captures and quiet checks

After the main loop, IPPOLIT then does bad caps if the depth is positive
(necessarily 1 half-ply), and then both look at quiet checks. The condition to
look at these is different, both in the depth required, and in the margin from
alpha/beta to evaluation (IPPOLIT has this margin depend on depth, while
Rybka does also, but modifies it via the pre-evaluation). Both then use their
“positional gain” search(es), with again the condition for doing this differing
both in depth required and margin of alpha/beta to evaluation.

8.4.2 qsearch for PV nodes: when in check

Both have a separate function for when in check at a pv qsearch node. Again
both use hash, though I don’t think Rybka tracks the hash move. Both have a
delta-pruning of pawns then minors, with different margins, though here Rybka’s
are fixed (not dependent on pre-evaluation as in other places). IPPOLIT puts
ordering-scores on the moves in the generation, while Rybka does it afterwards,
largely only caring about captures.

16

In the ordering, Rybka decrements the depth by 1 (it matters little whether
it is a half-ply or a whole at this point), with the ordering being skipped if
there is zero or one moves (and so the depth remains the same). IPPOLIT
does similar, but has the “curious” condition that the number of moves should
not be exactly one for its decrementing of the depth. However, I don’t see how
this could come from Rybka, and IPPOLIT uses the more standard “number of
moves is greater than one” condition in normal qsearch.

After this ordering by Rybka, both loop over moves, etc. IPPOLIT seems
to keep track of moves that exceed alpha, and hash them directly with a lower
bound (and the same in normal PV search), while Rybka does not.

8.5 CUT/ALL/exclude nodes

These form one function in Rybka, and three functions in IPPOLIT, though with
a variant for white/black, and for being in check, brings it to a total of 4 or 12
functions respectively. As with PV nodes, Rybka has an extra four parameters
in the function calls. I think Rybka doesn’t look at the 50-move rule here, but
IPPOLIT does. Both first look at hash, with a condition for lower/upper bounds
combined with whether a node is CUT/ALL. In Rybka, the “exclude” search
has a hashkey that is varied from the typical via the location of the opposing
king with the to/from of the excluded move. In IPPOLIT, it uses the to for the
opposing king and the from with one’s own king.

8.5.1 CUT/ALL/exclude nodes: Null move

After the hashing, the next item is null move. Both require (as Fruit) that the
evaluation be greater than the scout value, while Rybka also has a condition
with a hash depth. IPPOLIT turns off null move when a side has only a minor
left, while Rybka waits until only pawns are left. If the depth is large enough,
Rybka then first does an IID-like search at depth minus 12 half-ply, and if
this fails low, then skips null move. This does not appear in IPPOLIT, and
neither does Rybka’s next step, which (again at large depth) is to first check
the null move at a much smaller depth (maybe 6 ply) with a larger window.
After this, Rybka then does the “normal” 3 ply reduction, while IPPOLIT has
a standard of 3 ply, but adds more depending on the difference between the
scout and evaluation (this does not appear in Rybka). After null move, if it was
successful, both store the hash only if a hash move does not exist.

8.5.2 CUT/ALL/exclude nodes: IID and singular extensions

The next step is IID, which I think both call only at CUT nodes (not sure
with Rybka), and Rybka has a few extra conditions on when to call it, and a
different depth parameter (IPPOLIT requires 6 half-ply). Both use a vanilla
2-ply reduction. For CUT nodes there is next a “singularity” check. If a hash
move exists, and the depth is 16 half-ply (in IPPOLIT, not the same in Rybka),
then the exclusion search is called. As with PV nodes, IPPOLIT uses a varying

17

window based on the depth. It also has “supersingular” extensions (more than
1 ply) when the height of a node is sufficiently small compared to its depth.
I’m not sure whether these could theoretically blow up the search, but they do
allow forcing lines to be found more readily, I suspect. The “exclusion” call in
Rybka differs in both parameters (scout value and depth reduction), and while
Rybka does seem to have “supersingular” ideas, they seem much more limited
than in IPPOLIT (and involve the four extra function parameters somehow).

8.5.3 CUT/ALL/exclude nodes: Type of search

Both next turn to choosing a “type” of search. When the scout and evaluation
differ by a lot (depth-variable in each, though via a formula in IPPOLIT and
a table in Rybka), only captures and checks are considered. Both also can
eliminate enemy pawns from the capture-target (a form of delta pruning) in
this step.

8.5.4 CUT/ALL/exclude nodes: next move loop

Both of the next move loops both first check for a repetition possibility (as
above), and then skip moves that look hopeless. The criterion here is similar
(the count of moves is more than 5 [both use the same], the phase is “quiet
moves”, the move does not give check, either directly or via an xray), with the
primary condition being that the evaluation and scout differ by a sufficiently
large amount depending on the depth — however, Rybka uses a table for this
amount, and IPPOLIT has a formula, with both varying for the type of node.
I can also mention that Rybka has more phases in next move, for instance, a
secondary hash move (from IID), and more killers potentially. Rybka then has
a second condition for this “move-skipping” that IPPOLIT does not do at CUT
nodes. This one is similar, but involves whether a move is a bad-SEE quiet
move. Again the details differ. (See the appendix for pseudo-code).

8.5.5 CUT/ALL/exclude nodes: MakeMove and more pruning

Then make move is called, and eval with a lazy margin (IPPOLIT has a fixed
value, while Rybka gets it from pre-evaluation). Both then turn to extensions,
with IPPOLIT extending passed pawn pushes (again calculated differently) in a
slightly different manner, and also varying the rank-condition for such a push de-
pending on whether the node is CUT or ALL. IPPOLIT also has a “piece-swap”
extension at CUT nodes. If the move does not give check, there is then (in both)
another opportunity to ignore the move (undo it w/o recursing), which depends
on the post-move evaluation compared to the scout value — as usual, the de-
tails differ. Then late-move reduction is applied, with the values differing, for
all types of nodes. Rybka starts out at 6 half-ply at a CUT node, and increases
to 7, while IPPOLIT starts at 6, but has a logarithmic increase. For ALL nodes,
both start at the third move (assuming that the quiet moves phase is reached),
with a reduction of 2 half-ply, which IPPOLIT increases logarithmically again,
with Rybka eventually incrementing it to 3.

18

After the unmake move, Rybka again does some hash updating, and then
both turn to history and such as before. Both return scout-minus-one when a
move fails low.

8.5.6 CUT/ALL/exclude nodes: evasion search

Next there is the evasion search at these nodes. Both use hash, then a singularity
check via exclusion (with different parameters as above). Both manage not to
generate moves before testing the hash move, though the mechanism seems
different. Both use hash/killer/capture/history for ordering though the details
differ. Both check for repetition, but then Rybka has a “skip this move” (without
recursing) condition which IPPOLIT lacks (involving bad-SEE interposition —
this condition also appears in the low depth evasion search). Both use LMR
here, with different details again, and both extend a half-ply (for check) in
the “early” part of the game, though the definition of this differs (as does the
computation of the phase). Both extend by a half-ply (with a half-ply already
being extended for the move that gives check) in the “early” part of the game,
with the computation of this differing in them.

8.6 Nodes of low depth

As mentioned before, this is a separate search, for nodes of depth at least 1 ply,
but less than 4 ply (IPPOLIT) or 3 ply (Rybka). There is no difference between
CUT and ALL here in IPPOLIT. I think Rybka has a parameter for it, but I
don’t know how it is used.

8.6.1 Nodes of low depth: first pruning

Both first check if the situation is “hopeless”, which in IPPOLIT means the
evaluation and scout differ by 1125 or more. Rybka uses a different value, and
returns a different value in this case. Rybka then can immediately jump to
qsearch if the depth is less than 2 ply, and the margin is large. I don’t see
this in IPPOLIT, at least before hash. Hash follows a typical pattern, and
then another “give up” condtion is queried. This is again a margin between
evaluation and scout, and in IPPOLIT is “70 plus 10 times the depth in half-
ply”, while Rybka uses values from pre-evaluation for the details. IPPOLIT
then sets the “best value” to the minimum of scout-minus-one or evaluation,
and Rybka does something similar, but not the same. Null move is then called,
and there are fewer conditions, as one always recurses into qsearch. Rybka even
does null move in pawn endings here, while IPPOLIT still requires more than
a minor piece.

8.6.2 Nodes of low depth: type of search

As with the CUT/ALL nodes, the next step is to choose a “type” of search.
IPPOLIT has three types, while Rybka only has two. The common “secondary”
type of search is as before, with a large difference between evaluation and scout

19

leading to only captures and checks being considered. However, IPPOLIT has
a much more thorough delta pruning here, which is mostly absent in Rybka.
The third “type” of search in IPPOLIT (absent herein in Rybka) is when the
depth is less than 2 ply and the evaluation is bad but not horrible, and then
“positional gain” moves are also considered in addition to captures and checks.
Rybka only considers “positional gain” moves in qsearch.

8.6.3 Nodes of low depth: NextMove loop

In the next move loop, both (pre)eliminate possible repetitions, though Rybka
uses a different value for the scout comparison. Next both have two possible
ways of skipping a move. The first involves: the move phase being quiet moves,
the count of moves being large (different details), the move not being check,
having a piece (IPPOLIT only), and finally a comparison involving evaluation,
scout, and “positional gain”, with Rybka using a bound from pre-evaluation,
and IPPOLIT a value that depends on the depth and the move count. The
second involves bad-SEE moves (including captures, depending on the depth),
with the usual similarities and differences.

8.6.4 Nodes of low depth: MakeMove and beyond

After the move is made (and if it is not check), there is again the chance for
“move skipping” in both, with the details of the condition differing. Both then
simply reduce the depth by a ply (no extensions/reductions) and recurse. Both
reduce by only a half-ply when a move gives check (this is true at all stages, but
is subject to an additional half-ply extension in some places).

IPPOLIT does a checking that there is a legal move here (moves that are
generated but ignored are assumed “legal”), and if not, returns a draw score
(the same is done at CUT/ALL nodes). Rybka does not seem to do this. Also,
IPPOLIT returns the “best value” upon fail low, while Rybka does an interpo-
lation with the scout.

8.6.5 Nodes of low depth: evasion variant

In the evasion version of this function, both use hash, then have a mechanism
for avoiding move generation until after the hash move is tried. The ordering
of moves is as previously. Again Rybka uses a different value when checking
for possible repetitions. Rybka seems to ignore many more moves here, while
IPPOLIT only skips non-hash interposing moves that are bad-SEE when the
scout value is not a being-mated score. Rybka (among its conditions) has some-
thing that is sort of like this, but rather different. Both reduce by a half-ply,
except in the “early” game. IPPOLIT changes the best value to scout-minus-
one when a move was skipped and the best value is a being-mated score, while
Rybka does not.

20

8.7 qsearch nodes

Rybka has a couple of extra parameters here for passing arrays of attackers
around it seems (for use with the second SEE function?). IPPOLIT does not
have these. Both look at hash, with Rybka updating these extra parameters,
and then both set best value to something a bit bigger than the evaluation.
The difference is fixed (5) in IPPOLIT, and varies with pre-evaluation in Rybka
(essentially the value of a tempo is phase-dependent). If this best value ex-
ceeds scout, the qsearch is ignored (stand pat). Both then do delta pruning for
pawns, minor, and rooks, with the margins varying in Rybka via pre-evaluation.
Both then generate captures/promotions, though I think Rybka avoids all un-
derpromotions here (via a flag to capture-generation), except knight checks.
IPPOLIT then tags the hash move in this move list, while Rybka does that
in the move loop. Both have a condition regarding SEE, though Rybka will
alternatively use this “secondary” SEE depending on how close evaluation and
scout are. IPPOLIT has only bad captures and quiet checks in this function,
while Rybka also includes a “positional gain” generator. The conditions for
using quiet checks are also different, and Rybka has a bunch of bookkeeping
things with skipping moves and repetition checks (not apparent in IPPOLIT).
At the end of the function, Rybka does an interpolation of evaluation and scout
for a fail-low move, and sets the depth of the hash entry in a way depending on
whether “positional gain” search was attempted. IPPOLIT ignores all this.

8.8 qsearch nodes when in check

The evasion versions here have various differences, as IPPOLIT uses the hash
move, and doesn’t check if a move will lead to a repetition. Rybka also uses a
separate evasion generator, rather than the usual one. Both do use delta pruning
for pawns and minor (but not rooks), with the methodological differences of
before. Both prune bad-SEE moves, though IPPOLIT has a condition with
interposition. Both prune “hopeless” non-capture moves (using positional gain),
though IPPOLIT requires the side-to-move to have more than a minor piece
(null move condition) and the scout not to be a being-mated score. As with low
depth nodes, IPPOLIT sets best value to scout-minus-one when a move was
skipped and the best value is otherwise being-mated. Rybka has a few extra
details with bookkeeping for the attack arrays.

9 Other

Such things as time usage and UCI/FEN parsing are unalike. Also, I know of
no “bugs” in Rybka that IPPOLIT reproduces. For instance, IPPOLIT handles
2-rep versus 3-rep (at the root) more satisfactorily than Rybka.

21

A Closeness of evaluation numerology

In this appendix, I give some idea of “numerical coincidences” that appear in
evaluation. This is nontrivial to do, due to partial re-scaling, and also that one
really needs all the numbers to reach a complete conclusion, as else it is easy to
over-emphasize one genre or the other. However, I try to give a representative
sample.

A.1 Static Values

Here I choose king values, pawn values, and knight values. There are the actual
PST values, and also general piece sacling. IPPOLIT visibly uses a Fruit-like
formula to build PST values, while Larry Kaufman indicates that (aside from
pawns) a similar method was used a first approximation with Rybka, and then
adjusted in some cases.

A.1.1 Kings

Here are the PST values for kings in the opening, Rybka on the left (scaled to
centipawns, though the numbers are millipawns internally), and IPPOLIT on
the right.

23 29 1 -15 -15 1 29 23
26 32 4 -12 -12 4 32 26
27 33 5 -11 -11 5 33 27
31 37 9 -7 -7 9 37 31
34 40 12 -4 -4 12 40 34
36 42 14 -2 -2 14 42 36
41 47 19 2 2 19 47 41
43 49 20 -1 -1 20 49 43

5 10 -20 -40 -40 -20 10 5
15 20 -10 -30 -30 -10 20 15
25 30 0 -20 -20 0 30 25
30 35 5 -15 -15 5 35 30
35 40 10 -10 -10 10 40 35
38 43 13 -7 -7 13 43 38
41 46 16 -4 -4 16 46 41
44 49 19 -1 -1 19 49 44

Here the IPPOLIT values come from R[rank] + F[file] where

R = [4, 1,−2,−5,−10,−15,−25,−35] and F = [40, 45, 15,−5,−5, 15, 45, 40].

As can be noted, there is strong correlation, at least for the first few ranks.
Here are the endgame values for kings.

-55 -32 -19 -9 -9 -19 -32 -55
-35 -12 1 11 11 1 -12 -35
-23 0 13 23 23 13 0 -23
-18 5 18 28 28 18 5 -18
-22 1 14 24 24 14 1 -22
-35 -12 1 11 11 1 -12 -35
-53 -30 -17 -7 -7 -17 -30 -53
-76 -53 -40 -30 -30 -40 -53 -76

-53 -30 -14 -8 -7 -14 -30 -53
-35 -10 2 8 8 2 -10 -35
-24 -3 12 18 18 12 -3 -24
-18 3 18 27 27 18 3 -18
-23 -2 13 22 22 13 -2 -23
-29 -8 7 13 13 7 -8 -29
-40 -15 -3 3 3 -3 -15 -40
-73 -50 -34 -28 -28 -34 -50 -73

22

Again the IPPOLIT values come visibly from a formula involving centrali-
sation, and as Rybka presumably used a similar Fruit-like methodology at one
stage, the “pattern” similarity is almost irrelevant compared to any numerol-
ogy. Unfortunately, I don’t really see any great statistical test to apply here.
For instance, there are many similarities, but then b2/g2 differ by 15 centipawns
(more generally, the 2nd-rank weightngs differ rather notably).

A.1.2 Knights PST

Here are the raw PST values for Rybka (opening on left, ending on right), and
then for IPPOLIT, again after re-scaling Rybka to centipawns.

-127 -40 -30 -25 -25 -30 -40 -127
-35 -20 -10 -5 -5 -10 -20 -35
-25 -10 0 5 5 0 -10 -25
-25 -10 0 5 5 0 -10 -25
-30 -15 -5 0 0 -5 -15 -30
-40 -25 -15 -10 -10 -15 -25 -40
-55 -40 -30 -25 -25 -30 -40 -55
-75 -60 -50 -45 -45 -50 -60 -75

-25 -19 -15 -13 -13 -15 -19 -25
-17 -11 -7 -5 -5 -7 -11 -17
-13 -7 -3 -1 -1 -3 -7 -13
-13 -7 -3 -1 -1 -3 -7 -13
-15 -9 -5 -3 -3 -5 -9 -15
-19 -13 -9 -7 -7 -9 -13 -19
-25 -19 -15 -13 -13 -15 -19 -25
-33 -27 -23 -21 -21 -23 -27 -33

-120 -21 -10 -6 -6 -10 -21 -120
-16 0 11 15 15 11 0 -16
-7 9 20 24 24 20 9 -7
-5 11 22 26 26 22 11 -5

-11 5 16 20 20 16 5 -11
-20 -4 7 11 11 7 -4 -20
-36 -20 -9 -5 -5 -9 -20 -36
-58 -42 -31 -27 -27 -31 -42 -58

-15 -10 -5 -2 -2 -5 -10 -15
-8 -1 3 5 5 3 -1 -8
-3 3 8 10 10 8 3 -3
-4 1 6 10 10 6 1 -4
-6 -1 4 8 8 4 -1 -6

-10 -4 1 3 3 1 -4 -10
-15 -8 -4 -2 -2 -4 -8 -15
-22 -17 -12 -9 -9 -12 -17 -22

These do not look too close, but upon adding 20 to the opening values of
Rybka, and 10 to the ending, a closer congruence can be noted. Here are the
opening and ending values for Rybka after this is done.

-107 -20 -10 -5 -5 -10 -20 -107
-15 0 10 15 15 10 20 35
-5 10 20 25 25 20 10 -5
-5 10 20 25 25 20 10 -5

-10 5 15 20 20 15 5 -10
-20 -5 5 10 10 5 -5 -20
-35 -20 -10 -5 -5 -10 -20 -35
-55 -40 -30 -25 -25 -30 -40 -55

-15 -9 -5 -3 -3 -5 -9 -15
-7 -1 3 5 5 3 -1 -7
-3 3 7 9 9 7 3 -3
-3 3 7 9 9 7 3 -3
-5 1 5 7 7 5 1 -5
-9 -3 1 3 3 1 -3 -9

-15 -9 -5 -3 -3 -5 -9 -15
-23 -17 -13 -11 -11 -13 -17 -23

In particular, the ending values now have a maximal difference of 2, and
similarly (away from corners) with the opening values. Of course, one must

23

also account for the fact that both employ a Fruit-like method to generate
these values, and that these additions of 10 and 20 to the Rybka values are not
precisely recovered from the base piece values.

A.1.3 Base values

Indeed, for the “base value” of knights, Rybka gets these from a 3-phase inter-
polation, while IPPOLIT has a 4-stage interpolation. In fact, Rybka’s “3-stage”
interpolation only really depends on two parameters (indeed, Larry Kaufman
says that he demonstrated to Rajlich that the extra complication provided little
reward).

The IPPOLIT interpolation is with [265, 280, 320, 355], with the first two
being used in the first 25% of the game, the middle two in the middle 50%,
and the last two at the end. Rybka uses [277, 318, 359] Also, Rybka uses a
Fruit-phase of 1/2/4 for minor/rook/queen, while IPPOLIT uses 1/3/6.

For pawns, the IPPOLIT interpolators are [80, 90, 110, 125], while these are
[78, 100, 122] in Rybka.

The Knight/Pawn adjustment in IPPOLIT is [0, 2, 4, 5] (per pawn and knight),
while in Rybka it is just [3, 3, 3]. Both have a Rook/Pawn adjustment, but Rybka
has a Queen/Pawn adjustment while IPPOLIT does not.

A.1.4 Pawns

The Rybka values for PST with pawns are no longer multiples of 10 when
expressed in millipawns, and do not follow any readily discernible structure
that I can see. IPPOLIT again has a Fruit-like method.

0 0 0 0 0 0 0 0
-175 -50 19 88 88 19 -50 -175
-195 -70 -1 68 68 -1 -70 -195
-205 -82 -13 56 56 -13 -82 -205
-213 -90 -25 40 40 -25 -90 -213
-219 -97 -37 23 23 -37 -97 -219
-224 -103 -46 11 11 -46 -103 -224

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
-16 -16 -44 -72 -72 -44 -16 -16
-36 -36 -64 -92 -92 -64 -36 -36
-50 -50 -78 -106 -106 -78 -50 -50
-62 -62 -90 -118 -118 -90 -62 -62
-66 -66 -94 -122 -122 -94 -66 -62
-66 -66 -94 -122 -122 -94 -66 -62

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
-170 -50 10 80 80 10 -50 -170
-180 -60 0 70 70 0 -60 -180
-190 -70 -10 60 60 -10 -70 -190
-210 -90 -30 40 40 -30 -90 -210
-220 -100 -40 30 30 -40 -100 -220
-230 -110 -50 20 20 -50 -110 -230

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
-20 -40 -60 -80 -80 -60 -40 -20
-40 -60 -80 -100 -100 -80 -60 -40
-50 -70 -90 -110 -110 -90 -70 -50
-60 -80 -100 -120 -120 -100 -80 -60
-70 -90 -110 -130 -130 -110 -90 -70
-70 -90 -110 -130 -130 -110 -90 -70

0 0 0 0 0 0 0 0

24

The first two tables are for opening and endgame in Rybka, and the second
are for IPPOLIT (re-scaled to millipawns). Again the numerology looks quite
similar, though the slight difference in base value should also be included.

A.2 Some components in evaluation

A.2.1 Rooks

The first bonus occurs when the rook is on same line as opposing king with one
unit intervening. The bonus depends upon the unit (either a pin or an x-ray).
In IPPOLIT it is (30, 50) millipawns (I re-scaled to these for convenience) for a
friendly king or minor, and is (20, 50) for enemy units, except for rooks (zero)
and queens where it is (100, 200). In Rybka, a friendly non-major (including
pawns) is (10, 20) millipawns, while an opposing pawn/minor is (10, 20), an
opposing rook is (10, 10), and an opposing queen is (100, 150).

The mobility bonus in Rybka is rather complicated, involving pawn skele-
tons. There is a bonus of (6, 6) millipawns for each square of horizontal rook
mobility ignoring pieces, and (10, 11) millipawns (per square) for such vertical
mobility. There is another (25, 25) per square for general mobility, and a fi-
nal (5, 5) for mobility per square on ranks 5-8. IPPOLIT simply has (20, 30)
per square of rook mobility, and is thus somewhat lower. In all cases, mobility
restricts to squares not attacked by an enemy pawn.

Other bonuses are more formulaic. Here is a table:

Feature Name Rybka IPPOLIT
RguardK (30,0) (30,10)
RguardR (opp has Q) (30,30) -
OutpostRook - (10,20)
PguardR/OutpostRookGuarded (10,10) (30,40)
RattP (30,60) (20,30)
RattBN (30,60) (40,50)
RattQ (60,100) (50,50)
(opposing) PattR -(60,100) -(70,100)
RookHalfOpen (10,70) (30,60)
RookOpenFile (185,70) (200,100)
RookOpenFixedMinor (105,8) (100,0)
RookOpenMinor (155,45) (150,50)
RookHalfOpenPawn (35,55) (50,50)
RookHalfOpenKing (163,0) (150,0)
RookKing8th (50,100) (50,100)
DoubRook8thKingPawn (10,20) -
Rook7thKingPawn (80,320) (100,300)
DoubRook7thKingPawn (10,20) (100,200)
Rook6thKingPawn (40,160) (50,150)

25

I have followed the IvanHoe naming conventions, though I might stress that
these don’t always mean exactly the same thing for the two programmes (such
as doubled rooks on the 7th, which really means doubled majors in the first
place, but in IPPOLIT they must guard each other), and the naming is not
always that great (for instance, RattP means an pawn not guarded by another
pawn). Note that each bonus is gained at most once (for instance, attacking
two opposing unguarded pawns is the same as one).

A.2.2 King danger

Here I give a random sampling of 10 different configurations. The process in
both is the same, to say that a piece “hits” the opposing king if a square around
it is attacked. There is then a multiplier based upon how many Rybka has
extra bonuses when a piece has an x-ray attack (from a friendly piece) against a
square near the enemy king (example: wRa1, wNa2, bPa7, bKb8, so the white
rook x-ray attacks the a7 square), but I ignore these. Rybka demands that the
opponent have a queen on the board to give a penalty, while IPPOLIT does not.
All of these values are scaled with the phase. Both only count at most one pawn
that attacks the king area. The IPPOLIT values are re-scaled to millipawns.

Attackers N Q BQ RN QP QR RBB RNP QBN QRBP
Rybka 0 0 223 400 124 281 711 801 932 1057
IPPOLIT 20 50 270 250 200 320 610 450 780 1600

Note that Rybka also has a deduction when the king has no flee square.

A.3 Some components in pawn evaluation

A.3.1 General

Rybka has a few more items with pawn scoring, such as allowing the value of
an (adjective) pawn to vary on the square, while IPPOLIT usually only has it
as dependent on the rank. For instance, doubled isolated pawns on a closed file
are deducted at (24, 32) in Rybka unless they are on the board’s edge, when it
is (20, 26). Upon re-scaling to millipawns, IPPOLIT just has (20, 40). To get an
idea of how close the numerology is, here is another (random) example: Rybka
deducts (39, 52) for a backward pawn on a closed file, while it is (50, 50) for
IPPOLIT.

For rank-based constructs, such as passed pawn values, there is again some
similarity in numerology. For instance, IPPOLIT has a raw PassedPawnValue
of (100, 100), (200, 250), (400, 500), (600, 750) (in millipawns) for the 4th-7th
ranks, while Rybka has (80, 110), (200, 260), (380, 500), (610, 800), and also
(20, 20) for both the 2nd-3rd ranks.

On top of any slight differences in numerology, one must also recall that the
conditions for these to be applied are not always the same.

26

A.3.2 Drawishness

IPPOLIT has a formulaic way of computing drawishness from opposing pawn
structures. Rybka has a large table for each of the 28 = 256 possibilities of
occupied files (by one side), and any opposing nature of the pawns is ignored.
The Rybka table seems to depend on the “span” of the pawns, that is, the
distance from the leftmost to the rightmost pawn (of a given side). I give a table
of 10 random configurations, to show how much these can differ. Rybka uses
base 256, while IPPOLIT has base 64, so I scale the latter. Rybka’s drawishness
deduction is zero for a side with 5 or more pawns, while IPPOLIT’s becomes
zero at 6 or more.

White Black wR wI bR bI
cgh cdgh 54 72 30 40
de abfg 100 64 20 16
abe acdg 60 48 20 24
bdef abceh 42 32 0 12
fg efgh 100 96 54 32
abgh acdg 10 32 20 32
abcde abcd 0 20 54 48
ac bc 94 80 100 80
bdegh cefh 0 12 30 32
adeg bcfg 20 24 30 24

Here wR indicates the drawishness scaling by Rybka for white, under the
given pawn configurations. Here “100” means a scaling of 100/256, of the first
150 centipawns for Rybka (by now Rybka has divided by 10 in the evaluation
code), and the first 100 centipawns for IPPOLIT.

A.3.3 Shelter and storm

Rybka has numerous arrays for shelter and storm, depending on whether kings
are on opposite sides of the board, and whether the centre is blocked. IPPOLIT
has (in essence) one, though the capacity to have it depend on the file of the
king is present. Both of them use 3-file arrays for pawns in front of the king,
though the choice of which files to use will differ.

The numerology in some cases is close. For instance, the IPPOLIT arrays
for shelter are [0, 15, 40, 50, 55] depending on the rank of a sheltering pawn on
a “centered” file (usually that on which the king resides). Rybka has a similar
array [0, 14, 40, 50, 60] in the case when the kings are on opposite sides and the
centre is not blocked. Rybka (re-scaled to centipawns) has slightly differing ar-
rays for similar situations, such as [0, 11, 35, 45, 55] when the kings are on the
same side of the board. When the centre is blocked, the numbers are reduced.
The other two IPPOLIT arrays are [0, 5, 15, 20, 25] and [0, 10, 20, 25, 30], while in
Rybka the most analogous arrays are either: [0, 6, 25, 30, 35] and [0, 11, 25, 30, 35];

27

or [0, 3, 20, 25, 30] and [0, 8, 20, 25, 30]. In no case is there an exact correspon-
dence. Similar comments apply to storming pawns. The method in Rybka to
determine the “central” versus “edge” is a big lookup array, while in IPPOLIT
pointer-switching is used.

B Schematic drawing of search functions

I have chosen a random sampling of search functions for comparison. I avoided
CUT/ALL/exclude nodes, as Rybka has one function, while IPPOLIT has three.

B.1 PV node (IPPOLIT)

Ensure ALPHA and BETA are sane

If (DEPTH <= 1 HALF-PLY), then use PV-qsearch instead

Check 50-move rule and for repetition.

Look for hash entry

Return only if not ANALYSING and an exact score with large depth exists

If no hash-move and DEPTH is not too small (at least 6 half-ply)

If DEPTH is at least 10 half-ply, do IID with 8 half-ply reduction, if OK:

Call IID with 4 half-ply reduction (and DEPTH-fiddled ALPHA/BETA)

Else if DEPTH is at least 10 half-ply and DEPTH exceeds hash-depth by enough

Call IID with 8 half-ply reduction

If OK, call IID with 4 half-ply reduction

If in-check, then generate moves and order them

If one (quasi)legal move, extensions is set 2 half-ply

If two (quasi)legal moves, extensions is set to 1 half-ply

If DEPTH is large (16 half-ply), and hash-move exists, and (extensions < 2)

If hash-move is legal, get SCORE from search at reduced depth (5 ply)

Do exclusion search at reduced depth (usually 6 ply)

If SCORE beats EXCLUDE by enough, set extensions set to 1 half-ply

If SCORE beats EXCLUDE by even more, extensions is set to 2 half-ply

NEXT-MOVE LOOP

If (ALPHA > 0) and MOVE allows a repetition, then ignore MOVE

If (extensions < 2)

If MOVE is dangerous pawn push, then set extensions to 2 half-ply

Else if MOVE is check, or is a capture, or phase is early and in-check

or passed pawn is pushed, then extensions is set to 1 half-ply

If MOVE is hash-move or NEW_DEPTH is 1 half-ply, call PV-node

Else If NEW_DEPTH is small, then call low-depth, else call CUT-node

If SCORE beats ALPHA then call PV-node

If SCORE is lower than ALPHA, update HISTORY if move is not special

Record MOVE is good, and update HASH

If SCORE beats BETA, update HASH, return SCORE

If no moves exist, determine if mated or stalemate

Update history and hash for best move, and return score

28

B.2 PV node (Rybka)

If (DEPTH <= 1 HALF-PLY), then use PV-qsearch instead

Check for repetition.

Look for hash entry

If DEPTH is low enough, then return if a useful bound is known

If DEPTH is sufficiently larger than hash-depth

If DEPTH is large (say 12 half-ply)

Then try IID at a much lower depth and if the return value beats ALPHA,

Then try IID at a slightly lower depth (4 half-ply)

Else just do IID at a minimally lower depth (2 half-ply)

If ALPHA is a lot bigger than EVAL, then use secondary history table

If in-check, then generate moves and order them

If one (quasi)legal move, extensions is set 2 half-ply

If two (quasi)legal moves, extensions is set to 1 half-ply

If DEPTH is large (16 half-ply), and hash-move exists, and (extensions < 2)

If hash-move is check, or is a capture, or phase is early and in-check

or passed pawn is pushed, then extensions is set to 1 half-ply

If hash-move is recapture and previous EVALs did not differ much,

then extensions is set to 2 half-ply

If dangerous passed pawn is pushed, extensions is set to 2 half-ply

If move is legal, then determine SCORE via search at reduced depth (6 ply)

If SCORE beats ALPHA

If DEPTH is large, then do exclusion search at reduced depth (7 ply)

Else do exclusion search at reduced depth (5 ply)

If hash-move is singular, then extensions is set to 2 half-ply

// NOTE: the singular margin is different in the 2 "DEPTH is large" cases

NEXT-MOVE LOOP

If (ALPHA >= 0) and MOVE allows a repetition, then ignore MOVE

If MOVE is hash-move and is a recapture with previous EVALs close,

then extensions is set to 2 half-ply

If dangerous passed pawn is pushed, extensions is set to 2 half-ply

If MOVE is check, or is a capture, or phase is early and in-check

or passed pawn is pushed, then extensions is set to 1 half-ply

If MOVE is hash-move or NEW_DEPTH is 1 half-ply, call PV-node

Else If NEW_DEPTH is small, then call low-depth, else call CUT-node

If SCORE beats ALPHA

If DEPTH is large and other conditions involving ALPHA and BETA closeness

then call PV-esque null-window search

If SCORE still beats ALPHA then call PV-node

If DEPTH is large enough, and HASH conditions are met, return SCORE

If SCORE is lower than ALPHA, update HISTORY if move is not special

If SCORE beats BETA, then record it is good, update HASH, return SCORE

If SCORE is between ALPHA and BETA, record MOVE is good, increase ALPHA

If no moves exist, determine if mated or stalemate

Update history and hash for best move, and return score

29

B.3 Low-depth (not in-check)

B.3.1 Rybka

If EVAL is much lower then SCOUT, then return SCOUT minus 101

if DEPTH < 2 ply and EVAL is somewhat lower than SCOUT, use qsearch instead

Check for repetition, then do hash lookup

If EVAL is bigger than SCOUT by enough, then return fail-high

If EVAL >= SCORE then try null move

If SCORE exceeds EVAL by 100 or more, then use secondary HISTORY tables

If EVAL is enough lower than SCORE

Set SEARCH to only do captures and checks

If EVAL is even more lower than SCORE, ignore pawn captures also

NEXT-MOVE LOOP

If SCOUT is big enough and MOVE can lead to a repetition, ignore MOVE

If move-count is big, and MOVE-phase is quiet moves and MOVE is not check

If positional gain of MOVE is too low with EVAL and SCOUT, ignore MOVE

If MOVE is not a capture and is not a king move, ep, or hash-move,

and does not give check, and bad SEE, then ignore MOVE

If MOVE is a capture and DEPTH is low

If EVAL does not exceed SCORE by a lot and the captured piece is not a pawn

and MOVE is not trivially good-SEE, and is not a king move, ep,

or hash-move, and does not give check, and is bad SEE, then ignore MOVE

Make move, evaluate, check legality

If MOVE gives check, recurse at DEPTH minus 1 half-ply

Else if move-count is big and pos-gain is too low with SCOUT/newEVAL, undo

Else recurse at DEPTH minus 2 half-ply, either to low-depth or qsearch

If SCORE beats SCOUT then update HISTORY (if applicable) and HASH, return

Update HISTORY, interpolate best_value and SCORE, return

30

B.3.2 IPPOLIT (low depth, not in-check)

Ensure SCOUT is sane

If EVAL is much lower then SCOUT, then return SCOUT minus 1

Check for repetition and 50-move rule, then do hash lookup

If EVAL is bigger than SCOUT by enough, then return fail-high

If EVAL >= SCORE then try null move

If EVAL is enough lower than SCORE

Set SEARCH to only do captures and checks

If EVAL is even more lower than SCORE, ignore pawn captures also

If EVAL is even more lower than SCORE, ignore minors, and then rooks

Else if EVAL is lower than SCORE, but not too much lower

Set SEARCH to do captures, checks, and positional-gain moves

NEXT-MOVE LOOP

If SCOUT > 0 and MOVE can lead to a repetition, ignore MOVE

If move-count is big, and MOVE-phase is quiet moves and MOVE is not check,

and I have a piece, and pos-gain of MOVE is low with EVAL/SCOUT, ignore MOVE

If move is not a capture or (DEPTH is low and is not trivially good SEE)

and is not a king move, ep, or hash-move, does not give check, and bad SEE

then ignore the MOVE

Make move, evaluate, check legality, and if move gives check in POS_GAIN phase

If MOVE gives check, recurse at DEPTH minus 1 half-ply

Else if move-count is big and pos-gain is too low with SCOUT/newEVAL, undo

Else recurse at DEPTH minus 2 half-ply, either to low-depth or qsearch

If SCORE beats SCOUT then update HISTORY (if applicable) and HASH, return

If move-count is zero and ordinary moves were considered, return DRAW

Update HISTORY and return best_value

31

B.4 qsearch when not in-check

B.4.1 IPPOLIT

Ensure SCOUT is sane, check repetition and 50-move rule, then do hash lookup

Set best_value to EVAL plus a tempo, return if this beats SCOUT

Do delta-pruning, first captures only, then ignore pawns, then minors, rooks

Generate captures, then ensure hash move will go first when ordering

NEXT-MOVE LOOP (CAPTURES)

Find next move with highest ordering score

If MOVE is not hash-move and not a discovered check, and is bad SEE, ignore

Make move, evaluate, check legality

Recurse: If SCORE beats SCOUT, then update HASH and return (fail-high)

If DEPTH is not too low and EVAL and SCOUT are sufficiently close

Generate quiet checks

For each: make, eval, check legal, recurse, if fail-high, update & return

Update HASH and return (fail-low)

B.4.2 Rybka

Check for repetition then do hash lookup

Set best_value to EVAL plus a tempo, return if this beats SCOUT

Do delta-pruning, first captures only, then ignore pawns, then minors, rooks

Generate captures and LOOP:

Find next move with highest ordering score

If MOVE captures a king, return +CHECK_MATE

If MOVE is not a discovered check

If MOVE is not a promotion, nor ep, and SCOUT and EVAL differ by a lot

If the capture square is not notable and badSEE2, ignore the MOVE

Else if move is badSEE, ignore the move

Increment move count(s), and if EVAL+(move-count) beats SCOUT, return

Make move, evaluate, check legality

If move gives check

Determine how, update to-from squares, and delta-pruning

Recurse to qsearch (either in-check or not, passing to-from to former)

If recursion returns a good move, update to-from squares

If SCORE beats SCOUT, then update HASH and return (fail-high)

If DEPTH is not too low and EVAL and SCOUT are sufficiently close

Generate quiet checks and LOOP

If SCOUT is big enough and MOVE can lead to a repetition, ignore MOVE

Make move, evaluate, check legality, update to-from squares

Recurse to qsearch in-check

If SCORE beats SCOUT, then update HASH and to-from, return (fail-high)

If DEPTH is not too low and EVAL and SCOUT are sufficiently close

Generate posgain moves (two functions, depending on SCOUT/EVAL), LOOP:

If SCOUT is big enough and MOVE can lead to a repetition, ignore MOVE

If MOVE is badSEE ignore it

32

Make move, evaluate, check legality, ensure MOVE doesn’t give check

If MOVE does not gain enough, ignore it

Recurse, and if SCORE beats SCOUT, update HASH/to-from, return (fail-high)

Interpolate EVAL and SCOUT

Update HASH and return (fail-low)

B.5 qsearch when in-check

B.5.1 IPPOLIT

Ensure SCOUT is sane

Check for repetition and 50-move rule, then do hash lookup

Set best_value to mate score, depending on height

Do delta-pruning, first captures only, then ignoring pawns, then minors

Generate moves, if more than one move, then decrease DEPTH

Ensure hash move will go first when ordering

NEXT-MOVE LOOP

Find next move with highest ordering score

If MOVE is interpose and SCOUT is not a mate score,

and MOVE is not the hash-move and SEE is bad, ignore MOVE

If MOVE is not a capture, not a hash-move, and I have a piece,

and posgain is not enough, and SCOUT is not a mate score, ignore MOVE

Make move, evaluate, check legality

Recurse to qsearch

If SCORE beats SCOUT, then update HASH and return (fail-high)

If moves have been ignored and best_value is a mate score

set best_value to SCOUT minus 1

Update HASH and return (fail-low)

B.5.2 Rybka

Check for repetition then do hash lookup

Generate moves, if more than one move, then decrease DEPTH

// NOTE: a MASK is passed to the function that determines delta-pruning

NEXT-MOVE LOOP

Find next move with highest ordering score

If MOVE captures a king(?) return +CHECK_MATE

If MOVE is not a capture and not a king move (interposition) and not ep

and SEE is bad, ignore MOVE

If SCOUT is big enough and MOVE can lead to a repetition, ignore MOVE

If MOVE is not a capture (or promotion) and doesn’t give check (I think?)

and posgain (from a fixed piece with to-from?) is not enough, ignore MOVE

Make move, evaluate, check legality

Recurse to qsearch

If SCORE beats SCOUT, then update HASH

If MOVE is a capture, update MASK. Return (fail-high)

Update HASH and return //NOTE: function was passed a fail-low value to return

33

